# Math 206B Lecture 26 Notes 

Daniel Raban

March 11, 2019

## 1 D-Finite and Polynomially Recursive Series

Note: Today's lecture is a guest lecture. The lecture material is from section 6.4 of Stanley's Enumerative Combinatorics (Volume 2).

## 1.1 $D$-finite series

Let $K$ be a field. We have the ring of formal power series $K \llbracket x \rrbracket$.
Definition 1.1. If $u=\sum_{n} f(n) x^{n}$, then the formal derivative is $\frac{d}{d x} u=u^{\prime}=\sum_{n} n f(n) x^{n-1}$.
Proposition 1.1. Let $u \in K \llbracket x \rrbracket$. The following are equivalent.

1. $\operatorname{dim}_{K(x)}\left(K(x) u+K(x) u^{\prime}+K(x) u^{\prime \prime}+\cdots\right)<\infty$.
2. There are $p_{0}, \ldots, p_{\ell} \in K[x]$ with $p_{\ell} \neq 0$ such that

$$
p_{d} u^{(d)}+p_{d-1} u^{(d-1)}+\cdots+p_{1} u^{\prime}+p_{0} u=0 .
$$

3. There are $q_{0}, \ldots, q_{m}, q \in K[x]$ with $q_{m} \neq 0$ such that

$$
q_{m} u^{(m)}+q_{m-1} u^{(m-1)}+\cdots+q_{1} u^{\prime}+q_{0} u=q .
$$

Proof. (1) $\Longrightarrow(2)$ : Suppose $\operatorname{dim}=d$. Then $u, u^{\prime}, \ldots, u^{(d)}$ are linearly dependent over $K(x)$. Write down the dependence relation, and clear the denominators to get the $p_{i}$.
$(2) \Longrightarrow(3)$ : This is a special case.
$(3) \Longrightarrow$ (2): Suppose that $\operatorname{deg}_{x}(q(x))=t \geq 0$. Differentiate the polynomial relation $t+1$ times to get a homogeneous relation involving the derivatives of $u$. We get $p_{d}=q_{m} \neq 0$. Solve for $u^{(d)}$ to get

$$
u^{(d)} \in K(x) u+K(x) u^{\prime}+\cdots+K(x) u^{(d-1)} .
$$

Writing $u^{(d)}$ as a linear combination of $u, \ldots, u^{(d-1)}$ and differentiating gives $u^{(d+1)} \in$ $K(x) u+\cdots+K(x) u^{(d)}=K(x) u+\cdots+K(x) u^{(d-1)}$. By induction, for all $\left.k \geq 0, u^{(d+k}\right) \in$ $K(x) u+\cdots+K(x) u^{(d-1)}$.

This allows us to make the following definition.
Definition 1.2. $u \in K \llbracket x \rrbracket$ is $D$-finite if any of these three conditions hold for $u$.
Example 1.1. $u=e^{x}=\sum_{n} x^{n} / n$ ! is $D$-finite. This satisfies $u^{\prime}=u$, so $u^{\prime}-u=0$. In general, $u=x^{m} e^{a x}$ is $D$-finite, as $u^{\prime}=m x^{m-1} e^{a x}+a x^{m} e^{a x}=(m / x+a) u$.

Example 1.2. Suppose $u=\sum_{n \geq 0} n!x^{n}$. Then $(x u)^{\prime}=\sum_{n \geq 0}(n+1)!x^{n}$, so we see that $1+x(x u)^{\prime}=u$. That is, $x^{2} u^{\prime}+(x-1) u=-1$, so $u$ is $D$-finite.

### 1.2 Polynomially recursive series

Definition 1.3. Say $f: \mathbb{N} \rightarrow K$ is $P$-recursive (or polynomially recursive) if there are $P_{0}, \ldots, P_{e} \in K[x]$ with $P_{e} \neq 0$ such that

$$
P_{e}(n) f(n+e)+P_{e-1}(n) f(n+e-1)+\cdots+P_{0}(n) f(n)=0
$$

for all $n \in \mathbb{N}$.
Proposition 1.2. Let $u=\sum_{n \geq 0} f(n) x^{n} \in K \llbracket x \rrbracket$. Then $u$ is $D$-finite if and only if $f$ is $P$-recursive.

Proof. First, suppose $u$ is $D$-finite. Then we have polynomials $p_{I}$ such that

$$
p_{e} u^{(d)}+\cdots+p_{1} u^{\prime}+p_{0} u=0 .
$$

Then $x^{j} u^{(i)}=\sum_{n \geq 0}(u+i-j)_{i} f(u+i-j) x^{n}$, where $(u+i-j)_{i}$ is the falling factorial. For $k \gg 0$, equate coefficients of $x^{n+k}$ in the polynomial relation to get the recurrence. Note that if $\left[x^{j}\right] p_{d}(x) \neq 0$, then $\left[n^{d}\right] P_{d-j+k}(n) \neq 0$ (where brackets denote the coefficient of the term inside).

Now suppose $f$ is $P$-recursive. Then $f$ satisfies a relation

$$
P_{e}(n) f(n+e)+P_{e-1}(n) f(n+e-1)+\cdots+P_{0}(n) f(n)=0
$$

with $P_{e} \neq 0$. For each $i,\left\{(n+i)_{j}: j \geq 0\right\}$ is a basis for the $K$-vector space $K[u]$. So $P_{i}(n)$ is a $K$-linear combination of $(n+i)_{j} \mathrm{~s}$. So $\sum_{n} P_{i}(n) f(n+i) x^{n}$ is a $K$-linear combination of series of the form $\sum_{n>0}(n+i)_{j} f(n+i) x^{n}$. Now $\sum_{n>0}(n+i)_{j} f(n+i) x^{n}=R_{i}(x)+x^{j-i} u^{(j)}$, where $R_{i} \in x^{-1} K\left[x^{-1}\right]$. For example, $x^{-1} u^{\prime}=\sum_{n \geq-1}(n+2) f(n+2) x^{n}=f(1) x^{-1}+$ $\sum_{n \geq 0}(n+2) f(n+2) x^{n}$. Now multiply the relation by $x^{n}$ and sum over $n \geq 0$ to get

$$
0=\sum a_{i, j} x^{j-i} u^{(j)}+R(x) .
$$

This sum is finite, $a_{i, j} \in K$ are not all 0 , and $R(x) \in x^{-1} K\left[x^{-1}\right]$. Multiply by $x^{q}$ with $q \gg 0$. We get that $u$ is $D$-finite.

Example 1.3. Let $u=e^{x}$. Another way to show that $u$ is $D$-finite is to show that $f(n)=n$ ! is $P$-recursive: $f(n+1)-(n+1) f(n)=0$.

Example 1.4. Let $f(n)=\binom{2 n}{n}$. This is $P$-recursive: $(n+1) f(n+1)-2(2 n+1) f(n)=0$. So $u=\sum_{n \geq 0}\binom{2 n}{n} x^{n}$ is $D$-finite. This is the series for $1 / \sqrt{1-4 x}$.

Proposition 1.3. Suppose $f, g: \mathbb{N} \rightarrow K$ is P-recursive and $f(n)=g(n)$ for all sufficiently large $n$. Then $g$ is $P$-recursive.

Proof. Suppose $f(n)=g(n)$ for $n \geq n_{0}$. Then

$$
\left(\prod_{j=0}^{n_{0}-1}(n-j)\right)\left[P_{e}(n) g(n+e)+\cdots+P_{0}(n) g(n)\right]=0
$$

so $g$ is $P$-recursive.
Theorem 1.1. Suppose $u \in K \llbracket x \rrbracket$ is algebraic over $K(x)$ of degree $d$. Then $u$ is $D$-finite and satisfies a polynomial equation of order $d$.

Proof. Let $P(Y) \in K(x)[Y]$ be the minimal polynomial of $u$ over $K(x)$. Suppose $P(Y)=$ $\sum_{i=0}^{d} p_{i} Y^{i}$. Then $P(u)=0$. Differentiate to get

$$
0=(P(u))^{\prime}=\left(\sum_{i=0}^{d} p_{i} u^{i}\right)^{\prime}=\underbrace{\sum_{i=0}^{d} p_{i}^{\prime} u^{i}}_{=Q(u)}+\underbrace{\sum_{i=0}^{d} i p_{i} u^{i-1} u^{\prime}}_{=\left(\frac{\partial P}{\partial Y}(u)\right) u^{\prime}}
$$

The derivarive $\frac{\partial P}{\partial Y}(u) \neq 0$. So $u^{\prime}=Q(u) /\left(\frac{\partial P}{\partial Y}(u)\right) \in K(x)(u)$. Similarly, $u^{(n)} \in K(x)(u)$ for all $N$. Then we get linear dependence among $u, u^{\prime}, \ldots, u^{(d)}$.

